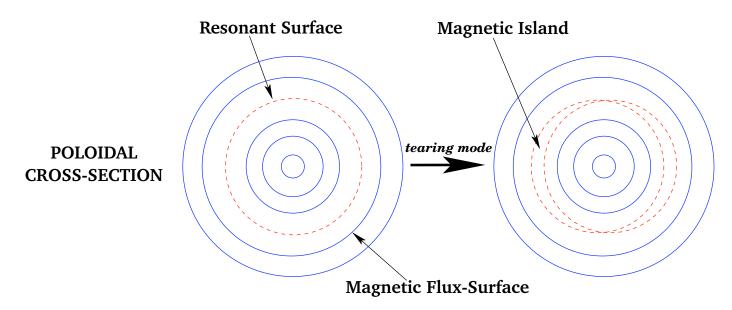
Fundamentals of Magnetic Island Theory in Tokamaks

RICHARD FITZPATRICK

t

http://farside.ph.utexas.edu/talks/talks.html


Macroscopic Instabilities

```
- Cistrph or enhrching is its

- Cistrph or enhrching is the compact of the compact is the compact of the compact is a single of the compact of the compa
```

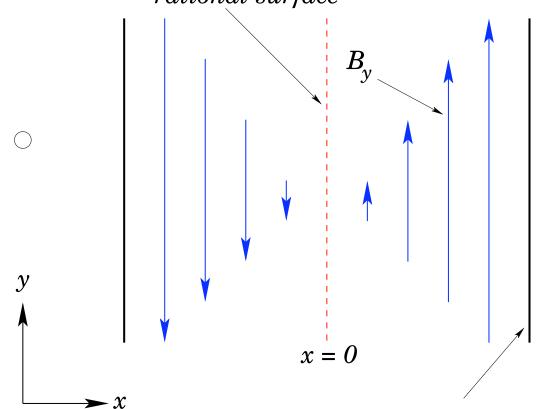
^a MHD Instabilities, G. Bateman (MIT, 1978).

Magnetic Islands

- Ct y shrtcor tc hh hy nght/prtcs
 troy ytrhsts hrg hyrpyy ng ng ghtc
 nsrthrth hs yor singerss srfcs

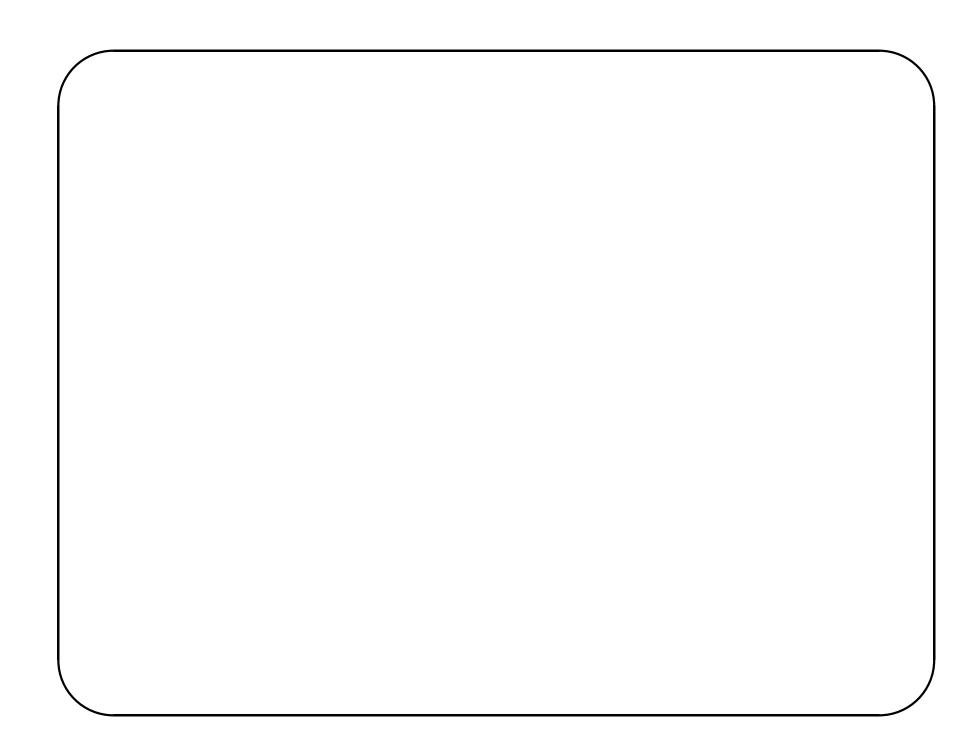
Need for Magnetic Island Theory

- grç s in fr this ssc t_{or} t_{h} nonlinear p_{h} s for this p_{h} s for this in ryr of the trunk srfc
- h ry h t p s s f h h σ rh σ y t s h r y rs s thhit t rhg σ r σ y h h h h h rrg h h rst σ t σ t σ
- Ling of the ry rgyrr of Rqrnnnr ghos ship the ryt phop in professor


MHD Theory

```
• ring or s r cres pc inst ts find ct h
ps tr t in stgtth sings fr f
```

- p st or th ry s n magne orydrodynam/cal appro ma on a fi h c t y tr ts p s s s/ngle- u/d
- h s s slab app'o ma on t s p fy n yss


^aPlasma Confinement, R.D. Hazeltine, and J.D. Meiss (Dover, 2003).

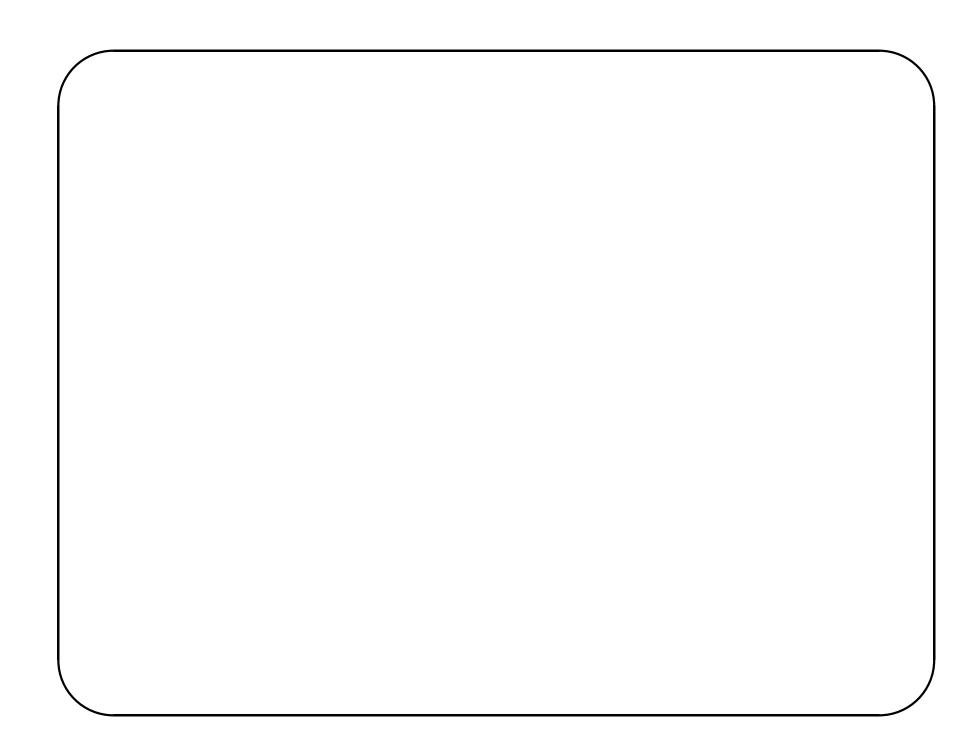
Slab Approximationrational surface

Slab Model

- Crisic rings xyz Li/z 0
- Ass prs on $f_{\underline{\alpha}}$ not $f_{\underline{\alpha}}$ $\vec{B}_z \vec{Z}$
- A or stringths in r
- A inglish r of t q r girts shringth $L_s = B_z/B_v'(0). \label{eq:Ls}$
- At shr of the cc to the Bz
- Prfc t n, ryc t is $t = \pm a$
- In ring instruction for the ring instruction in the ring instruction is a substitution of the ring in the ring

Outer Region

• h trrgh fir prss stfps hhhr


Inner Region

- hhrrghchir, hrinsfc x=0 Of the W 1 hr W s ght s h $_{\text{OV}}$ th h X
- hhnrrghhh $_{\mathbf{Q}'}$ C is hhhr C is h p s hrich prini
- hhrs th St syptic y $\{h_{0r}, t t t s t h r_{0r}, y t h_{0r}\}$

Constant- Approximation

- $^{(1)}(x) g n r y_{or} s n t rysgnc nty n X r nn rrg n$ $| ^{(1)}(W) ^{(1)}(0)| | ^{1}(0)|.$
- Cons an appro ma fon tr t (1)(x) sc rst rt r X

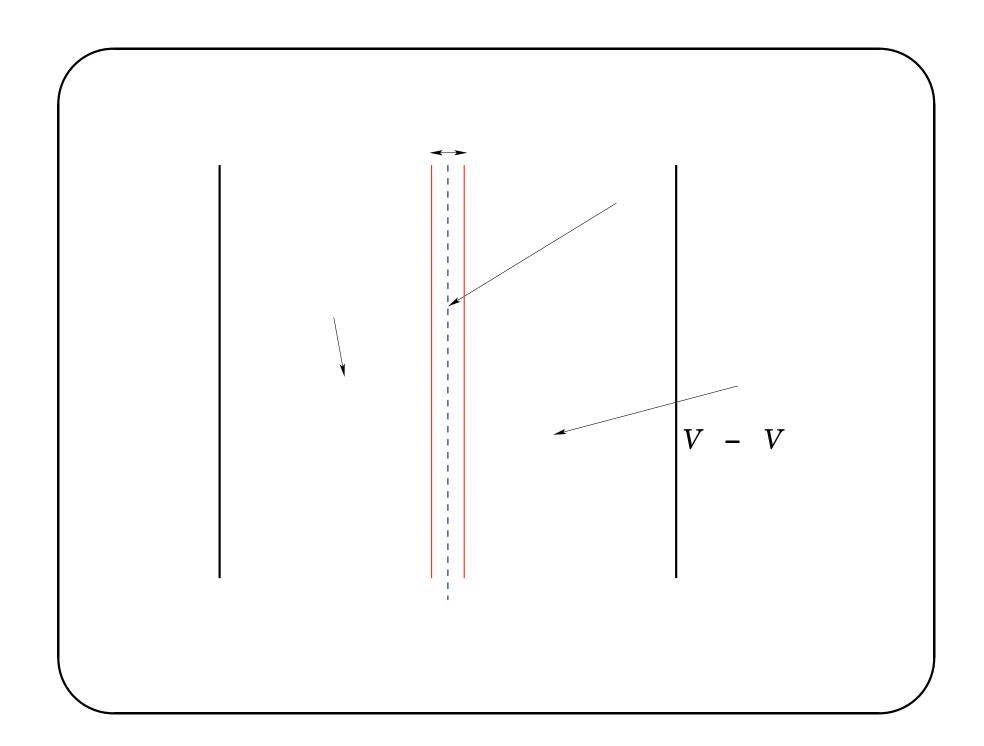
MHD Flow - II

• L ₁

$$M()=\frac{d}{d}.$$

• sysh htht

$$V_y = x M$$
.


$$4$$
 y sy try $M()$ s odd f a t n f x a

$$M = 0$$

MHD Flow - IV

```
* t tht V_y = x\,M \to |x|\,M_0 s |x|/W \to \infty
```

- shp c typr fih t ns r h p s
- on r in single of the single

Rutherford Equation - I

- $n ext{ s} ext{ in } ext{ fr}$ $n ext{ s} ext{ con } ext{ f} ext{ } ext{ }$
- ullet $oldsymbol{\mathbb{Q}}$ $oldsymbol{\mathbb{Q}}$

Rutherford Equation - II

$$\frac{d}{dt}\cos$$

Rutherford Equation - IV

• ghrrrrsy ptt thing thinkring trg isy ors a

$$\frac{0.823}{dt} \frac{dW}{dt} - 0.41 \left(-\frac{d^4 B_y^{(0)} / dx^4}{d^2 B_y^{(0)} / dx^2} \right)_{x=0} W.$$

•
$$a strt_{or} \frac{d}{dt} = 0 sh_{or} \frac{h}{or} s$$

MHD Theory: Summary

• ring or inst f' > 0

•

Drift-MHD Theory

- n_{or} rft ppr the hysert is charged parcle difference in $\frac{\vec{E} \times \vec{B}}{\vec{B}}$ cty
- ss int yt thry fps
- Chrctrsc rgths son La mor adus calcula ed ha
- $C_h rc_t rs_t c_t c_t y s_t c_t c_t y V_* c_t rs_t c_t c_t v_* c_t$

Basic Assumptions

- R_t ns frs fs pc _ty
- • Ass pr c_tr n_h t_tr nsp r_ts c n_ty s_tr ng t_h t $T_e = T_e(\)$
- Ass $T_i/T_e = constant frs fs pc ty$

Basic Definitions

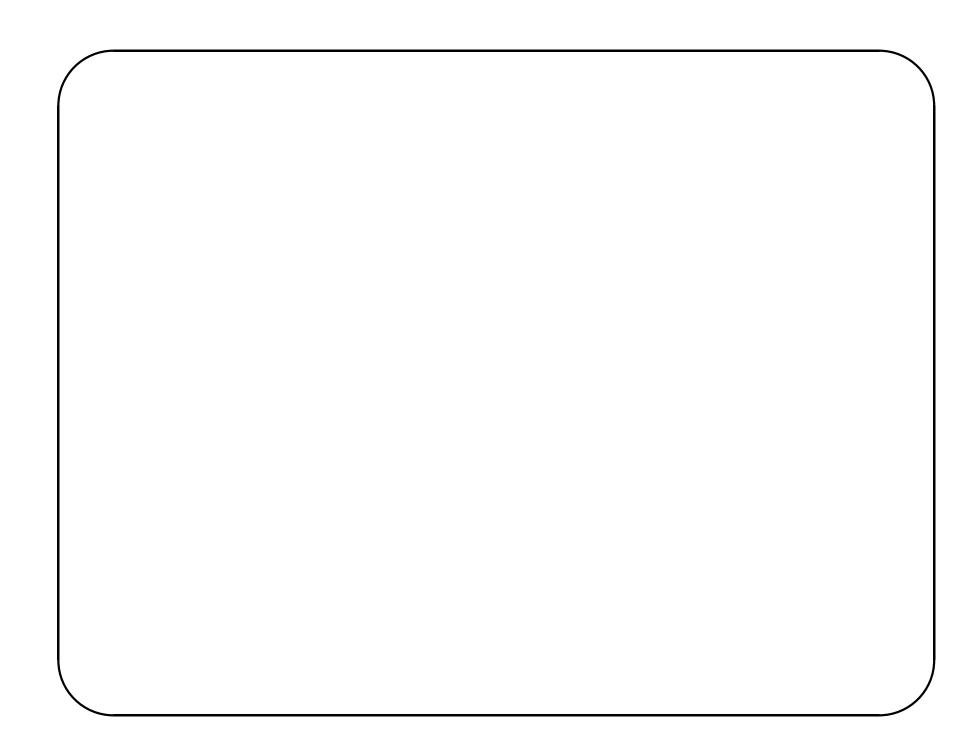
```
gn<sub>t</sub>c font n
                           - J pr c rr ng
                         - g ngc ner /e ser foren
                          - U pr n rety
                         - n ctrnn r nsty ns nfr c gr n
                           -V_z pr h c _{ty}
• Pr trs
                        - = (L_n/L_s)^2 \quad \text{in } L_n \text{ s q r} \quad \text{in } \text{s ty gr}_{\text{or}} \quad \text{in } \text{the } \text{s the } \text{s the } \text{s the } \text{or} \quad \text{in } \text{the } \text{or } \text{o
                                            s hgt h
                           prp nc r n/c tr n s sty
```

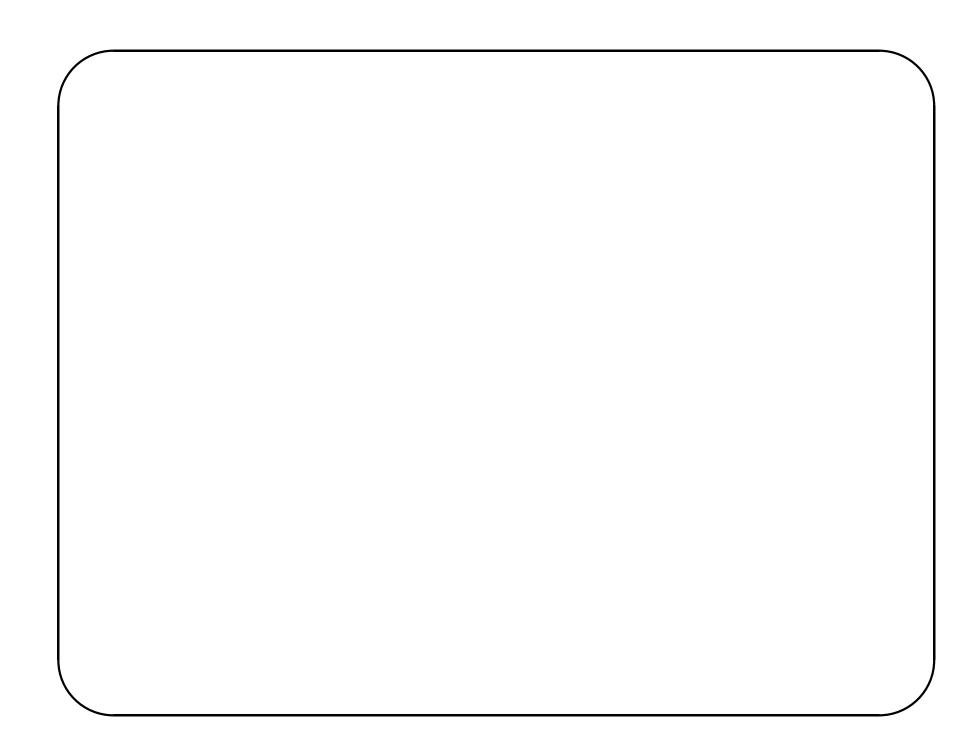
Drift-MHD Equations - I

• t
$$_{0r}y$$
 st t $_{0r}r$ ft $_{1}$ q t $_{1r}$ ns $_{1r}^{a}$

$$= -x^{2}/2 + \cos , \quad U = _{1r}^{2} ,$$

$$0 = [-n,] + J,$$

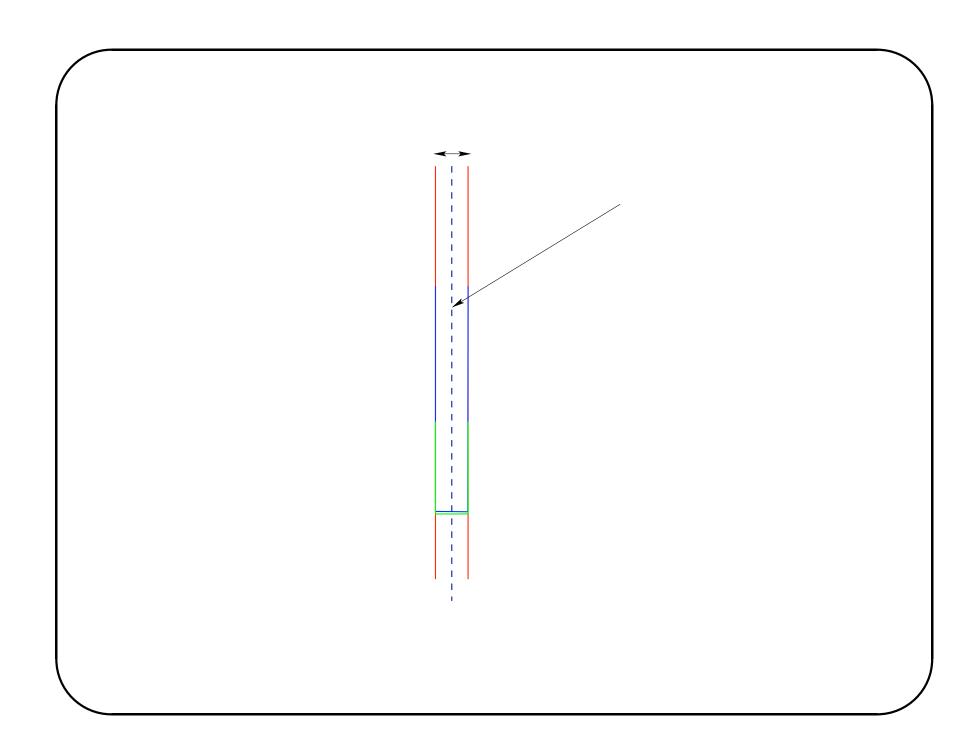

$$0 = [, U] - \frac{1}{2} \left\{ _{1r}^{2} [, n] + [U, n] + [_{1r}^{2} n,] \right\} + [J,] + \mu_{i} _{1r}^{4} (+ n) + \mu_{e} _{1r}^{4} (-n),$$


$$0 = [, n] + [V_{z} + J,] + D _{1r}^{2} n,$$

$$0 = [, V_{z}] + [$$

Drift-MHD Equations - II

• y _lry



Subsonic Islands ^a

- $s_l r r$ = (), n = n().
- stht the ctristrest forth $_{0}$ in $_{0}$ the string in $_{0}$ in $_{0}$ the string in $_{0}$ the string in $_{0}$ the string is $_{0}$ the string in $_$

Analysis - I

- hs ty q t $n r_{or} c$ st $0 \quad [V_z + J,] + D^{2} n.$
- $r_{i}c_{i}y_{i}q_{i}n_{i}n_{o}c_{o}c_{i}s_{i}$ $0 \qquad \left[-MU-(\ /2)(LU+M^{2}n)+J,\ \right] \\ +\mu_{i}^{4}(\ +\ n)+\mu_{e}^{4}(\ -n).$
- srfc rg t_h q t is rc t_h t [A,] = 0

Island Propagation

- (1)

$$V = V_{EB} + \frac{(\mu_i - \mu_e)}{(1 +)(\mu_i + \mu_e)}.$$

- $V_i = V_{EB} + /(1+)$, $V_e = V_{EB} 1/(1+)$.
- $V = \frac{\mu_i}{\mu_i + \mu_e} V_i + \frac{\mu_e}{\mu_i + \mu_e} V_e.$ $s \ \ _0^* p_h s \ \ c \ _{ty} s \ \ _{scos} y \ \ _{e} r \ \ _{e} d \ a \ e \ a r e \ f$ $n \ \ _0^* r_t r \ \ _0^* \ \ _0 c \ _{tr} r r \ \ _0^* \ \ _0 c \ _{tr} s$

Polarization Term - I

• rc ty q t hy
$$\sigma$$
s
$$J_{c} = \frac{1}{2} \left(x^{2} - \frac{x^{2}}{1} \right) \frac{d[M(M + L)]}{d} + I()$$

$$ts_{\sigma} = rt^{r} + r^{r} + r^$$

$$J_{c} = \frac{1}{2} \left(x^2 - \frac{x^2}{1} \right) \frac{d[M(M + L)]}{d} + \frac{-1}{d} \frac{d}{dt} \frac{\cos}{1}.$$

Polarization Term - II

- Asy pic qhing thinkring trighty of $' = -4 \int_{+}^{-\infty} J_c \cos d \ .$
- the srfc highers he start from $\frac{n}{2}$ L

Drift-MHD Theory: Summary

- Rsis i rg s ns e rg ngh frs n s i ii n rsiy pr
- sh prpgisiprphic resity ghtor rg f
- 1strptr hRthrfrqths st ng
- PrintraRthrfrqqtasse ing proport prpincres stygrtycos ctrapport s sty fihs ht pct in st ing thrs